Objectives: Low-density lipoprotein cholesterol (LDL-C) estimation is critical for risk classification, prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). Predictive equations and direct LDL-C are used. We investigated the comparability between the Martin/Hopkins, Sampson, Friedewald and eight other predictive equations on two analysers, to determine whether the equation or analyser influences predicted LDL-C result.
Methods: In two unpaired datasets, 9,995 lipid profiles were analysed by the Abbott Architect and 4,782 by the Roche Cobas analysers. Non-parametric statistics and Bland Altman plots were used to compare LDL-C.
Results: On the Abbott analyser; the Martin/Hopkins, Sampson and Friedewald LDL-C were comparable (median bias ≤1.8%) over a range of 1-4.9 mmol/L. On the Roche platform, Martin/Hopkins LDL-C was comparable to Friedewald (median bias 0.3%) but not to Sampson LDL-C (median bias 25%). In patients with LDL-C <1.8 mmol/L and triglycerides (TG) ≤1.7 mmol/L, predicted LDL-C using Abbott reagents was similar between Martin/Hopkins, Sampson and Friedewald equations but not comparable using Roche reagents. Abbott reagents classified 10-20% of patients in the 1.0-1.8 mmol/L range (Martin/Hopkins 13.4%; Sampson 14.5%; Friedewald 16%; direct LDL-C 13.2%). Roche reagents classified 11-30% in the 1.0-1.8 mmol/L range (Martin/Hopkins 23%; Sampson 11%; Friedewald 25%; direct LDL-C 17%).
Conclusions: Performance of predictive equations is influenced by the choice of analyser for total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and TG. Replacement of the Friedewald equation with Martin/Hopkins estimation to improve quality of LDL-C results can be safely implemented across analysers, whereas caution is advised regarding the Sampson equation.
Keywords: Friedewald; Martin/Hopkins; atherosclerosis; cholesterol; equation; low density lipoprotein.
© 2021 Walter de Gruyter GmbH, Berlin/Boston.