Finding narrow-band, ultrapure blue thermally activated delayed fluorescence (TADF) materials is extremely important for developing highly efficient organic light-emitting diodes (OLEDs). Here, spin-vibronic coupling (SVC)-assisted ultrapure blue emitters obtained by joining two carbazole-derived moieties at a para position of a phenyl unit and performing substitutions using several blocking groups are presented. Despite a relatively large singlet-triplet gap (∆EST ) of >0.2 eV, efficient triplet-to-singlet crossover can be realized, with assistance from resonant SVC. To enhance the spin crossover, electronic energy levels are fine-tuned, thereby causing ∆EST to be in resonance with a triplet-triplet gap (∆ETT ). A sizable population transfer between spin multiplicities (>103 s-1 ) is achieved, and this result agrees well with theoretical predictions. An OLED fabricated using a multiple-resonance-type SVC-TADF emitter with CIE color coordinates of (0.15, 0.05) exhibits ultrapure blue emissions, with a narrow full-width-at-half-maximum of 21 nm and a high external quantum efficiency of 23.1%.
Keywords: Stokes shift; blue organic light-emitting diodes; efficiency; narrow full-width-at-half-maximum; spin-vibronic coupling.
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.