Gastric cancer is the most common gastrointestinal tumor with an increasing incidence. Furthermore, advanced gastric cancer is more common, but the mechanism underlying the proliferation and metastasis of gastric cancer has not been thoroughly explored. N6-methyladenosine (m6A) methyltransferase 3 (METTL3) may be involved in the proliferation and metastasis of gastric cancer. Therefore, Yes-associated protein 1 (YAP1) in the Hippo pathway was selected as the target, and the relationship between METTL3 and the proliferation and metastasis of gastric cancer was proved through a series of experiments. This research showed that the expression of m6A and METTL3 was upregulated in human gastric cancer tissues and gastric cancer cell lines. After lentiviral transfection, METTL3 silencing in AGS (human gastric adenocarcinoma cell line AGS) and MKN-45 (human gastric cancer cell line MKN-45) gastric cancer cell lines directly inhibited the proliferation, aggressiveness, and migration of gastric cancer cells. Mechanically, the inhibition of the YAP1-TEAD signaling pathway by peptide 17 reduces m6A methylation and the total mRNA level of YAP1. It also eliminates the promoting effect of METTL3 on the proliferation and migration of gastric cancer cells. In turn, the overexpression of YAP1 eliminates the inhibitory effect of METTL3 silencing on the proliferation, migration, and invasion of gastric cancer cells. This article proved that m6A methyltransferase METTL3 promoted the proliferation and migration of gastric cancer cells through the m6A modification of YAP1.
Copyright © 2021 Wenjie Zhou et al.