Obstructive Sleep Apnea (OSA) is a common disorder characterized by periodic cessation of breathing during sleep. OSA affects daily life and poses a severe threat to human health. The standard clinical method for identifying and predicting OSA events is the use of Polysomnography signals. In this paper, a novel scheme based on an ensemble of recurrence plots (RPs) and pre-trained convolutional neural networks (RPCNNs) is proposed to improve the prediction rate of OSA. First, RPs were used to represent the dynamic behavior of single electroencephalogram (EEG) and electrocardiogram (ECG) signals for 60 s before and during OSA events. Then, using RPs, three prompt CNNs named ResNet-50 were fine-tuned, and their classification results were fused via the Majority Voting (MV) method to produce a final result concerning prediction. Next, the subject-independent Leave-One-Subject-Out Cross-Validation (LOSO-CV) and subject-dependent 10-fold Cross-Validation (10-fold CV) methods were used to validate the prediction rate from signals derived from the University College Dublin Sleep Apnea Database. Finally, the highest achieved average accuracy for the fusion level was 91.74% and 89.45% at the 10-fold CV and LOSO-CV. Additionally, our results outperformed state-of-the-art findings and could be recommended to predict and detect other biomedical signals. As a result, this predictive system can also be used to adjust the air pressure in sleep apnea patients' Automatic Positive Airway Pressure (APAP) devices.
Keywords: Convolutional Neural Network (CNN); Ensemble approach; Majority voting; Obstructive Sleep Apnea (OSA); Polysomnography; Prediction; Recurrence Plots (RPs).
Copyright © 2021 Elsevier Ltd. All rights reserved.