Many molecular systems in nature undergo autonomous addition and extraction of components in order to execute diverse functions, which rely on molecular components that can sense, process, and transmit information from the environment. Building artificial molecular systems using a similar strategy may lead to the construction of life-like synthetic materials. Herein, we report the design of a dynamic multicomponent molecular system from DNA self-assembly, which is capable of autonomously adding and extracting molecular components initiated by molecular triggers. Orthogonality was integrated into molecular components by harnessing the design capacity of DNA sequences. As a proof of concept, we built a three-component DNA tubular system, which can selectively add or extract one, two, or three components in an orthogonal and programmable manner. We further demonstrated that molecular extraction may be designed in response to environmental cues such as protons. Moreover, the tubes can be disassembled on demand to facilitate their uptake by cells. This work may prime the design of artificial multicomponent molecular systems with increasing complexity, diversity, and functionality that may guide the development of new synthetic materials beyond DNA self-assembly.
Keywords: DNA self-assembly; component addition and extraction; controllable cell uptake; multicomponent molecular systems; pH-responsive system; self-healing.