Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO2 into CO

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40629-40637. doi: 10.1021/acsami.1c11081. Epub 2021 Aug 20.

Abstract

Atomically thin two-dimensional (2D) carbon nitride sheets (CNs) are attracting attention in the field of photocatalytic CO2 reduction. Because of the rapid recombination of photogenerated electron-hole pairs and limited more active sites, the photocatalytic efficiency of CNs cannot meet the actual requirements. Here, atomically thin 2D/2D van der Waals heterostructures of metal-free graphdiyne (GDY)/CNs are fabricated through a simple electrostatic self-assembly method. Experimental characterizations along with first-principles calculations show that the introduction of GDY in CNs promoted the transport of photogenerated carriers in the melon chain, thus suppressing the recombination of photogenerated electron-hole pairs. Both in situ FTIR measurements and DFT calculation confirm that the introduced GDY served as the CO2 adsorption site and enhanced the CO2 adsorption capacity of the CNs/GDY heterostructure. Thanks to the 2D/2D van der Waals heterojunction, the optimized CNs/GDY enhances significantly the CO generation rate up to 95.8 μmol g-1 that is 19.2-fold higher than that of CNs. This work provides a viable approach for the design of metal-free van der Waals heterostructure-based photocatalysts with high catalytic activity.

Keywords: CO2 production; DFT calculations; carbon nitride; photocatalyst; van der Waals heterostructure.