Introduction: The COVID-19 pandemic has an excessive impact on residents in long-term care facilities (LTCF), causing high morbidity and mortality. Early detection of presymptomatic and asymptomatic COVID-19 cases supports the timely implementation of effective outbreak control measures but repetitive screening of residents and staff incurs costs and discomfort. Administration of vaccines is key to controlling the pandemic but the robustness and longevity of the antibody response, correlation of neutralising antibodies with commercial antibody assays, and the efficacy of current vaccines for emerging COVID-19 variants require further study. We propose to monitor SARS-CoV-2 in site-specific sewage as an early warning system for COVID-19 in LTCF and to study the immune response of the staff and residents in LTCF to COVID-19 vaccines.
Methods and analysis: The study includes two parts: (1) detection and quantification of SARS-CoV-2 in LTCF site-specific sewage samples using a molecular assay followed by notification of Public Health within 24 hours as an early warning system for appropriate outbreak investigation and control measures and cost-benefit analyses of the system and (2) testing for SARS-CoV-2 antibodies among staff and residents in LTCF at various time points before and after COVID-19 vaccination using commercial assays and neutralising antibody testing performed at a reference laboratory.
Ethics and dissemination: Ethics approval was obtained from the University of Alberta Health Research Ethics Board with considerations to minimise risk and discomforts for the participants. Early recognition of a COVID-19 case in an LTCF might prevent further transmission in residents and staff. There was no direct benefit identified to the participants of the immunity study. Anticipated dissemination of information includes a summary report to the immunity study participants, sharing of study data with the scientific community through the Canadian COVID-19 Immunity Task Force, and prompt dissemination of study results in meeting abstracts and manuscripts in peer-reviewed journals.
Keywords: COVID-19; epidemiology; health economics; immunology; infection control; public health.
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.