Objective: With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these issues is to use the rule-based gazetteer developed at our institution.
Materials and methods: Performance, resource utilization, and runtime of the rule-based gazetteer were compared with five annotation systems: BioMedICUS, cTAKES, MetaMap, CLAMP, and MedTagger.
Results: This rule-based gazetteer was the fastest, had a low resource footprint, and similar performance for weighted microaverage and macroaverage measures of precision, recall, and f1-score compared to other annotation systems.
Discussion: Opportunities to increase its performance include fine-tuning lexical rules for symptom identification. Additionally, it could run on multiple compute nodes for faster runtime.
Conclusion: This rule-based gazetteer overcame key technical limitations facilitating real-time symptomatology identification for COVID-19 and integration of unstructured data elements into our CDS. It is ideal for large-scale deployment across a wide variety of healthcare settings for surveillance of acute COVID-19 symptoms for integration into prognostic modeling. Such a system is currently being leveraged for monitoring of postacute sequelae of COVID-19 (PASC) progression in COVID-19 survivors. This study conducted the first in-depth analysis and developed a rule-based gazetteer for COVID-19 symptom extraction with the following key features: low processor and memory utilization, faster runtime, and similar weighted microaverage and macroaverage measures for precision, recall, and f1-score compared to industry-standard annotation systems.
Keywords: and symptoms; artificial intelligence; clinical decision support systems; follow-up studies; information extraction; natural language processing; signs.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.