FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells

Nutrients. 2021 Jul 30;13(8):2664. doi: 10.3390/nu13082664.

Abstract

Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.

Keywords: B-FABP; FABP7; docosahexaenoic acid; fatty acids; glioblastoma; neural stem-like cells; neurospheres; phospholipids.

MeSH terms

  • Arachidonic Acid / metabolism
  • Biological Transport
  • Brain / metabolism
  • Brain Neoplasms / genetics
  • Brain Neoplasms / metabolism*
  • Cell Line, Tumor
  • Cell Movement
  • Docosahexaenoic Acids / metabolism*
  • Docosahexaenoic Acids / pharmacology
  • Fatty Acid-Binding Protein 7 / genetics
  • Fatty Acid-Binding Protein 7 / metabolism*
  • Fatty Acid-Binding Proteins / metabolism
  • Fatty Acids
  • Fatty Acids, Omega-3 / metabolism
  • Fatty Acids, Omega-6 / metabolism
  • Fatty Acids, Unsaturated / metabolism
  • Gene Expression Regulation, Neoplastic
  • Glioblastoma / genetics
  • Glioblastoma / metabolism*
  • Humans
  • Phospholipids / metabolism
  • Prognosis
  • Tumor Microenvironment / drug effects
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism*

Substances

  • FABP7 protein, human
  • Fatty Acid-Binding Protein 7
  • Fatty Acid-Binding Proteins
  • Fatty Acids
  • Fatty Acids, Omega-3
  • Fatty Acids, Omega-6
  • Fatty Acids, Unsaturated
  • Phospholipids
  • Tumor Suppressor Proteins
  • Docosahexaenoic Acids
  • Arachidonic Acid

Grants and funding