Reflective displays or "electronic paper" technologies provide a solution to the high energy consumption of emissive displays by simply utilizing ambient light. However, it has proven challenging to develop electronic paper with competitive image quality and video speed capabilities. Here, the first technology that provides video speed switching of structural colors with high contrast over the whole visible is shown. Importantly, this is achieved with a broadband-absorbing polarization-insensitive electrochromic polymer instead of liquid crystals, which makes it possible to maintain high reflectivity. It is shown that promoting electrophoretic ion transport (drift motion) improves the switch speed. In combination with new nanostructures that have high surface curvature, this enables video speed switching (20 ms) at high contrast (50% reflectivity change). A detailed analysis of the optical signal during switching shows that the polaron formation starts to obey first order reaction kinetics in the video speed regime. Additionally, the system still operates at ultralow power consumption during video speed switching (<1 mW cm-2 ) and has negligible power consumption (<1 µW cm-2 ) in bistability mode. Finally, the fast switching increases device lifetime to at least 107 cycles, an order of magnitude more than state-of-the-art.
Keywords: conductive polymers; electronic paper; structural colors; video.
© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.