RNAs play myriad functional and regulatory roles in the cell. Despite their significance, three-dimensional structure elucidation of RNA molecules lags significantly behind that of proteins. NMR-based studies are often rate-limited by the assignment of chemical shifts. Automation of the chemical shift assignment process can greatly facilitate structural studies, however, accurate chemical shift predictions rely on a robust and complete chemical shift database for training. We searched the Biological Magnetic Resonance Data Bank (BMRB) to identify sequences that had no (or limited) chemical shift information. Here, we report the chemical shift assignments for 12 RNA hairpins designed specifically to help populate the BMRB.
Keywords: Chemical shift database; GAGA tetraloop; RNA; Solution NMR spectroscopy.
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.