Immunotherapy for metastasized non-small-cell lung cancer (NSCLC) can show long-lasting clinical responses. Selection of patients based on programmed death-ligand 1 (PD-L1) expression shows limited predictive value for durable clinical benefit (DCB). We investigated whether early treatment effects as measured by a change in circulating tumor DNA (ctDNA) level is a proxy of early tumor response to immunotherapy according to response evaluation criteria in solid tumors v1.1 criteria, progression-free survival (PFS), DCB, and overall survival (OS). To this aim, blood tubes were collected from advanced-stage lung adenocarcinoma patients (n = 100) receiving immune checkpoint inhibitors (ICI) at baseline (t0 ) and prior to first treatment evaluation (4-6 weeks; t1 ). Nontargetable (driver) mutations detected in the pretreatment tumor biopsy were used to quantify tumor-specific ctDNA levels using droplet digital PCR. We found that changes in ctDNA levels were strongly associated with tumor response. A > 30% decrease in ctDNA at t1 correlated with a longer PFS and OS. In total, 80% of patients with a DCB of ≥ 26 weeks displayed a > 30% decrease in ctDNA levels. For patients with a PD-L1 tumor proportion score of ≥ 1%, decreasing ctDNA levels were associated with a higher frequency a DCB (80%) and a prolonged median PFS (85 weeks) and OS (101 weeks) compared with patients with no decrease in ctDNA (34%; 11 and 39 weeks, respectively). This study shows that monitoring of ctDNA dynamics is an easy-to-use and promising tool for assessing PFS, DCB, and OS for ICI-treated NSCLC patients.
Keywords: ICI treatment response monitoring; NSCLC; PD-L1; ctDNA; droplet digital PCR.
© 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.