Objectives: Vitamin D deficiency was found to be associated with increased risk for gastric cancer (GC). We previously found that vitamin D inhibited GC cell growth in vitro. However, the in vivo antitumor effect of vitamin D in GC as well as the underlying mechanisms are not well understood. The aim of this study was to investigate the anticancer effect of vitamin D on GC both in vitro and in vivo.
Methods: Human GC cells MKN45, MKN28, and KATO III were used. The expressions of vitamin D receptor (VDR) and CD44 were downregulated by using predesigned siRNA molecules. Cell viability was evaluated by methyl thiazolyl tetrazolium assay. Soft agar assay was used for colony formation of GC cells. Flow cytometry was used to assess CD44-positive cell population. CD44high cancer cells were enriched by using anti-CD44-conjugated magnetic microbeads. Quantitative real-time polymerase chain reaction and Western blot were performed to detect gene and protein expressions, respectively. Clinical samples were collected for evaluation of the correlation of VDR and CD44 expression. Orthotopic tumor-bearing mice were established to evaluate the antitumor effect of vitamin D.
Results: The results showed that the active form of vitamin D, 1,25(OH)2D3, had a remarkable inhibitory effect in CD44-expressing human GC MKN45 and KATO III cells, but not in CD44-null MKN28 cells. The gene expressions of CD44 and VDR in GC cell lines and GC patient tissues were positively correlated. Furthermore, 1,25(OH)2D3 suppressed MKN45 and KATO III cell growth through VDR-induced suppression of CD44. Additionally, we demonstrated that 1,25(OH)2D3 inhibited Wnt/β-catenin signaling pathway, which might lead to the downregulation of CD44. In an orthotopic GC nude mice model, both oral intake of vitamin D and intraperitoneal injection with 1,25(OH)2D3 could significantly inhibit orthotopic GC growth and CD44 expression in vivo.
Conclusion: To our knowledge, this study provided the first evidence that vitamin D suppressed GC cell growth both in vitro and in vivo through downregulating CD44. The present study sheds light on repurposing vitamin D as a potential therapeutic agent for GC prevention and treatment.
Keywords: CD44; Gastric cancer; VDR; Vitamin D; Wnt/β-catenin signaling.
Copyright © 2021 Elsevier Inc. All rights reserved.