Background and aims: Lipoprotein(a) [Lp(a)] concentration in heterozygous familial hypercholesterolemia (heFH) is not well established. Whether the genetic defect responsible for heFH plays a role in Lp(a) concentration is unknown. We aimed to compare Lp(a) in controls from a healthy population, in genetically diagnosed heFH and mutation-negative hypercholesterolemia subjects, and to assess the influence on Lp(a) of the genetic defect responsible for heFH.
Methods: We conducted a cross-sectional study, performed in a lipid clinic in Spain. We studied adults with suspected heFH and a genetic study of FH genes (LDLR, APOB, APOE and PCSK9) and controls from de Aragon Workers' Health Study. HeFH patients from the Dyslipidemia Registry of the Spanish Atherosclerosis Society (SEA) were used as validation cohort.
Results: Adjusted geometric means (95% confidence interval) of Lp(a) in controls (n = 1059), heFH (n = 500), and mutation-negative subjects (n = 860) were 14.9 mg/dL (13.6, 16.4), 21.9 mg/dL (18.1, 25.6) and 37.4 mg/dL (33.3, 42.1), p < 0.001 in all comparisons. Among heFH subjects, APOB-dependent FH showed the highest Lp(a), 36.5 mg/dL (22.0, 60.8), followed by LDLR-dependent FH, 21.7 mg/dL (17.9, 26.4). These differences were also observed in heFH from the SEA cohort. The number of plasminogen-like kringle IV type-2 repeats of LPA, the hypercholesterolemia polygenic score or LDLc concentration did not explain these differences. In LDLR-dependent FH, Lp(a) levels were not different depending on the affected protein domain.
Conclusions: Lp(a) is elevated in mutation-negative subjects and in heFH. The concentration of Lp(a) in heFH varies in relation to the responsible gene. Higher Lp(a) in heFH is not explained by their higher LDLc.
Keywords: Apolipoprotein B; Heterozygous familial hypercholesterolemia; Lipoprotein(a); Low-density lipoprotein receptor; Polygenic; Polygenic hypercholesterolemia; Score.
Copyright © 2021 Elsevier B.V. All rights reserved.