Novel-Coronavirus (COVID-19) outburst has become a worldwide pandemic which threaten the scientific community to design and discover efficient and effective treatment strategies against this deadly virus (SARS-CoV-2). Still now, there is no antiviral therapy or drug available in the market which can efficiently combat the infection caused by this virus. In this respect, using available drugs by screening with molecular docking and molecular dynamics studies not only minimizes lengthy chemical trials but also reduces discovery cost for the pharmaceutical industry. During the COVID-19 pandemic situations hydroxychloroquine, chloroquine known as HCQ and CQ tablets have gained popularity as for the treatment coronavirus (COVID-19) but the main threatening effect of HCQ, CQ use lies on their side effects like blistering, peeling, loosening of the skin, blurred vision stomach pain, diarrhea, chest discomfort, pain, or tightness, cough or hoarseness which require immediate medical attention. Encapsulation of HCQ and CQ drugs by the cyclic macromolecules such as α and β-Cyclodextrin, to form host-guest complexes is very effective strategy to mask the cytotoxicity of certain drugs and alleviating and modulating side effects of drug applications. In the present work, we have encapsulated the HCQ and CQ drugs α and β-Cyclodextrin and made a comprehensive analysis of stability, optical properties. Details analysis verified that between QC and HCQ, HQC showed stronger affinity towards β-Cyclodextrin. This strategy can reduce the side effect of HCQ and CQ thereby offers a new way to use these drugs. We hope the present study should help the researchers to develop potential therapeutics against the novel coronavirus.
Keywords: COVID-19 main chain protease; Hydroxychloroquine; Molecular dynamics; TDDFT.
© 2021 Elsevier B.V. All rights reserved.