Agriculture soils are responsible for a large proportion of global nitrous oxide (N2O) emissions-a potent greenhouse gas and ozone depleting substance. Enhanced-efficiency nitrogen (N) fertilizers (EENFs) can reduce N2O emission from N-fertilized soils, but their effect varies considerably due to a combination of factors, including climatic conditions, edaphic characteristics and management practices. In this study, we further developed the DayCent ecosystem model to simulate two EENFs: controlled-release N fertilizers (CRNFs) and nitrification inhibitors (NIs) and evaluated their N2O mitigation potentials. We implemented a Bayesian calibration method using the sampling importance resampling (SIR) algorithm to derive a joint posterior distribution of model parameters that was informed by N2O flux measurements from corn production systems a network of experimental sites within the GRACEnet program. The joint posterior distribution can be applied to estimate predictions of N2O reduction factors when EENFs are adopted in place of conventional urea-based N fertilizer. The resulting median reduction factors were - 11.9% for CRNFs (ranging from -51.7% and 0.58%) and - 26.7% for NIs (ranging from -61.8% to 3.1%), which is comparable to the measured reduction factors in the dataset. By incorporating EENFs, the DayCent ecosystem model is able to simulate a broader suite of options to identify best management practices for reducing N2O emissions.
Keywords: Bayesian calibration; Controlled-release nitrogen fertilizer; Enhanced efficiency nitrogen fertilizers; Nitrification inhibitors; Nitrous oxide; Sampling importance resampling; Sensitivity analysis.
Copyright © 2021. Published by Elsevier B.V.