Background and purpose: Although many pediatric neuroradiology practices empirically use noncontrast brain and pituitary MR imaging for evaluation of growth hormone deficiency, central precocious puberty, and short stature, there are currently insufficient published data to support this practice in an evidence-based fashion. Therefore, the use of contrast-enhanced MR imaging for all pediatric pituitary endocrinopathies remains widespread. We evaluated whether noncontrast MR imaging has adequate diagnostic yield for the evaluation of pediatric growth hormone deficiency, central precocious puberty, and short stature.
Materials and methods: Pituitary MR imaging studies obtained for growth hormone deficiency, central precocious puberty, or short stature in patients 0-18 years of age from 2010 to 2019 were analyzed. Separate blinded review of noncontrast images in cases with abnormalities on the original radiology report was performed by 2 subspecialty-trained pediatric neuroradiologists, with discrepancies resolved by consensus.
Results: Of the 134/442 MR imaging studies obtained for growth hormone deficiency, central precocious puberty, or short stature with hypothalamic-pituitary region abnormalities, there was 70% concordance with the original reports on blinded review of noncontrast images. Twenty-two of 40 discrepancies were deemed unrelated to the indication, and 9 cases originally interpreted as possible microadenoma were read as having normal findings on blinded review. Only 9 of 40 discrepancies required contrast for further characterization.
Conclusions: In our study, most relevant radiologic findings in patients with growth hormone deficiency, central precocious puberty, and short stature were detectable without contrast, providing evidence that contrast can be avoided in routine MR imaging evaluation of these indications. We propose a "rapid noncontrast pituitary" MR imaging protocol for pediatric patients presenting with growth hormone deficiency, central precocious puberty, or short stature, which may increase efficiency and decrease contrast and anesthesia exposure.
© 2021 by American Journal of Neuroradiology.