The activity of the matrix metalloproteinase (MMP) MT1-MMP is strictly regulated by expression and cellular location. In macrophages LPS activation leads to the up-regulation of MT1-MMP and this need to be at the cell surface for them to degrade the dense extracellular matrix (ECM) components to create a path to migrate into injured and infected tissues. Fixed and live imaging shows newly made MT1-MMP is packaged into vesicles that traffic to and fuse with LBPA+ LAMP1+ late endosomes en route to the surface. The R-SNARE VAMP4, found on Golgi-derived vesicles that traffic to late endosomes, forms a trans-SNARE complex with the Q-SNARE complex Stx6/Stx7/Vti1b. The Stx6/Stx7/Vti1b complex has been shown to be up-regulated in lipopolysaccharide (LPS)-activated cells to increase trafficking of key cytokines through the classical pathway and now we show here it is up-regulation also plays a role in the late endosomal pathway of MT1-MMP trafficking. Depletion of any of the SNAREs in this complex reduces surface MT1-MMP and gelatin degradation. Conversely, overexpression of the Stx6/Stx7/Vti1b components increases surface MT1-MMP levels. This suggests that Stx6/Stx7/Vti1b is a key Q-SNARE complex in macrophages during an immune response and in partnership with VAMP4 it regulates transport of newly made MT1-MMP.
Keywords: MT1-MMP; SNARE; Stx6; Stx7; VAMP4; Vti1b; late endosome; macrophage; trafficking.
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.