Systems of conductive skin for power transfer in clinical applications

Eur Biophys J. 2022 Mar;51(2):171-184. doi: 10.1007/s00249-021-01568-8. Epub 2021 Sep 3.

Abstract

The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.

Keywords: Biofilm; Cardiac implantable electronic device (CIED); Driveline infections (DLIs); Foreign body reaction (FBR); Left ventricular assist devices (LVAD); Surface topography.

Publication types

  • Review

MeSH terms

  • Heart-Assist Devices*