Vitamin C, also known as ascorbic acid or ascorbate, is a water-soluble vitamin synthesized in plants as well as in animals except humans and several other animal species. Humans obtain vitamin C from dietary sources and via vitamin supplementation. Vitamin C possesses important biological functions, including serving as a cofactor for many enzymes, acting as an antioxidant and anti-inflammatory compound, and participating in regulating stem cell biology and epigenetics. The multifunctional nature of vitamin C contributes to its essentialness in maintaining and safeguarding physiological homeostasis, especially regulation of immunity and inflammatory responses. In this context, vitamin C has been investigated for its efficacy in treating diverse inflammatory disorders, including sepsis, one of the major causes of death globally and for which currently there is no cure. Accordingly, this Mini-Review surveys recent major research findings on the effectiveness of vitamin C and the underling molecular mechanisms in sepsis intervention in both experimental animal models and randomized controlled trials. To set a stage for discussing the effects and mechanisms of vitamin C in sepsis intervention, this Mini-Review begins with an overview of vitamin C redox biochemistry and its multifunctional properties.
Keywords: Ascorbic acid; Inflammation; Mitochondria; Oxidative stress; Randomized controlled trial; Redox homeostasis; Sepsis; Septic shock; Vitamin C.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.