Microsatellite instability (MSI) is emerging as a promising subtype related to immunotherapy in gastric cancer (GC). However, the underlying mechanism between MSI and microsatellite stability (MSS) remains unclear. In this study, we conducted a weighted gene co-expression network analysis and found that the expression of heterogeneous nuclear ribonucleoprotein L (HNRNPL) was significantly increased in MSI GC compared with MSS GC. This finding was further validated in public GC cohorts and commercialized human GC tissue microarray. The significant negative correlation with the expression of mismatch repair protein mutL homolog 1 (MLH1) may be one of the potential mechanisms for the upregulation of HNRNPL expression in MSI GC (R = -0.689, p = 8.59e-11). In addition, HNRNPL expression was markedly upregulated in GC tissues compared with adjacent normal tissues. High HNRNPL expression also predicted a poor prognosis in GC patients. Finally, gene set enrichment analysis revealed that high HNRNPL MSI GC samples were highly positive associated with the biological functions of inflammation and cell proliferation, such as interferon gamma response, MYC targets, E2F targets, and G2/M checkpoints. In conclusion, HNRNPL could be a new MSI-associated prognostic biomarker in GC and could be a new target for the MSI GC treatment.
Keywords: HNRNPL; MSI; WGCNA; gastric cancer.