Background: Osteogenesis greatly depends on the differentiation of bone marrow mesenchymal stem cells (BMSCs). CKIP-1 is considered to be a negative regulator of BMSCs. Methods: We established a CKIP-1 knockout mouse model, then isolated and cultured BMSCs from wild-type and knockout groups. Results: Our data demonstrated that CKIP-1 knockout significantly increased bone structure in the experimental mouse model and enhanced BMSC proliferation. CKIP-1 knockout contributed to osteoblastic and adipogenic differentiation. Furthermore, CKIP-1 regulated osteogenesis in BMSCs via the MAPK signaling pathway, and BMSCs from the CKIP-1 knockout mice were effective in repairing the skull defect null mice. Conclusion: Our results concluded that silencing of CKIP-1 promoted osteogenesis in experimental mice and increased BMSCs differentiation via upregulation of the MAPK signaling pathway.
Keywords: CKIP-1; MAPK signal pathway; bone marrow mesenchymal stem cells; osteogenic differentiation; osteoporosis.