Cancer vaccines (CVs) represent a long-sought therapeutic and prophylactic immunotherapy strategy to obtain antigen (Ag)-specific T-cell responses and potentially achieve long-term clinical benefit. However, historically, most CV clinical trials have resulted in disappointing outcomes, despite promising signs of immunogenicity across most formulations. In the past decade, technological advances regarding vaccine delivery platforms, tools for immunogenomic profiling, and Ag/epitope selection have occurred. Consequently, the ability of CVs to induce tumor-specific and, in some cases, remarkable clinical responses have been observed in early-phase clinical trials. It is notable that the record-breaking speed of vaccine development in response to the coronavirus disease-2019 pandemic mainly relied on manufacturing infrastructures and technological platforms already developed for CVs. In turn, research, clinical data, and infrastructures put in place for the severe acute respiratory syndrome coronavirus 2 pandemic can further speed CV development processes. This review outlines the main technological advancements as well as major issues to tackle in the development of CVs. Possible applications for unmet clinical needs will be described, putting into perspective the future of cancer vaccinology.
Keywords: cancer; immunotherapies; vaccines.
Copyright © 2021 European Society for Medical Oncology. Published by Elsevier Ltd. All rights reserved.