Drone audition techniques are helpful for listening to target sound sources from the sky, which can be used for human searching tasks in disaster sites. Among many techniques required for drone audition, sound source tracking is an essential technique, and thus several tracking methods have been proposed. Authors have also proposed a sound source tracking method that utilizes multiple microphone arrays to obtain the likelihood distribution of the sound source locations. These methods have been demonstrated in benchmark experiments. However, the performance against various sound sources with different distances and signal-to-noise ratios (SNRs) has been less evaluated. Since drone audition often needs to listen to distant sound sources and the input acoustic signal generally has a low SNR due to drone noise, making a performance assessment against source distance and SNR is essential. Therefore, this paper presents a concrete evaluation of sound source tracking methods using numerical simulation, focusing on various source distances and SNRs. The simulated results captured how the tracking performance will change when the sound source distance and SNR change. The proposed approach based on location distribution estimation tended to be more robust against distance increase, while existing approaches based on directional estimation tended to be more robust against decreasing SNR.
Keywords: drone audition; microphone array; sound source detection; sound source tracking.