Dynamic Tilting of Ferroelectric Domain Walls Caused by Optically Induced Electronic Screening

Phys Rev Lett. 2021 Aug 27;127(9):097402. doi: 10.1103/PhysRevLett.127.097402.

Abstract

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.