Acetylcholinesterase (AChE) is reversibly inhibited by α-tocopherol (α-T). Steady state kinetic analysis shows that α-T is a mixed slow-binding inhibitor of type A of human enzyme (Kci = 0.49 μM; Kui = 1.6 μM) with a residence time of 2 min on target. Molecular dynamics (MD) simulations support this mechanism, and indicate that α-T first forms multiple non-specific interactions with AChE surface near the gorge entrance, then binds to the peripheral side with alkylene chain slowly sliding down the gorge, inducing no significant conformational change. α-T slightly modulates the progressive inhibition of AChE by the cyclic organophosphorus, cresyl saligenylphosphate, accelerating the fast pseudo-first order process of phosphorylation. A moderate accelerating effect of α-T on phosphorylation by paraoxon was also observed after pre-incubation of AChE in the presence of α-T. This accelerating effect of α-T on ex vivo paraoxon-induced diaphragm muscle weakness was also observed. The effect of α-T on AChE phosphylation was interpreted in light of molecular modeling results. From all results it is clear that α-T does not protect AChE against phosphylation by organophosphorus.
Keywords: Acetylcholinesterase; Molecular modeling; Organophosphorus; Slow-binding inhibition; α-tocopherol.
Copyright © 2021 Elsevier B.V. All rights reserved.