Bioaccessibility of microalgae-based carotenoids and their association with the lipid matrix

Food Res Int. 2021 Oct:148:110596. doi: 10.1016/j.foodres.2021.110596. Epub 2021 Jul 10.

Abstract

The composition of microalgae can contribute to nutritious and functional diets. Among the functional compounds, carotenoids are in focus since positive effects on human health have been established, which are in turn related to their bioaccessibility. In addition to essential nutrients, our hypothesis was that microalgae biomasses could be used as sources of bioaccessible carotenoids. Thus, this study determined for the first time the bioaccessibility of carotenoids from biomass of Scenedesmus bijuga and Chlorella sorokiniana and their possible relationship with the lipid composition of the matrix. The samples were submitted to in vitro digestion protocol, and carotenoids were determined by HPLC-PDA-MS/MS. Individual bioaccessibility of carotenoids was ≥ 3.25%. In general, compounds in their cis conformation were more bioaccessible than trans; and total carotenes more than total xanthophylls. Twelve compounds were bioaccessible from the biomass of S. bijuga, and eight in C. sorokiniana. In S. bijuga, the bioaccessibility of total carotenoids was 7.30%, and the major bioaccessible carotenoids were 9-cis-β-carotene (43.78%), 9-cis-zeaxanthin (42.30%) followed by 9-cis-lutein (26.73%); while in C. sorokiniana, the total bioaccessibility was 8.03%, and 9-cis-β-carotene (26.18%), all-trans-β-carotene (13.56%), followed by 13-cis-lutein (10.71%) were the major compounds. Overall, the total content of lipids does not influence the bioaccessibility of total carotenoids. Still, the lipid composition, including structural characteristics such as degree of saturation and chain length of the fatty acid, impacts the promotion of individual bioaccessibility of carotenes and xanthophylls of microalgae. Finally, the results of this study can assist the development of microalgae-based functional food ingredients and products.

Keywords: Carotenes; Carotenoids bioaccessibility; Green microalgae; In vitro digestion; Lipid composition; Xanthophylls.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carotenoids
  • Chlorella*
  • Fatty Acids
  • Humans
  • Microalgae*
  • Tandem Mass Spectrometry

Substances

  • Fatty Acids
  • Carotenoids