We highlight the potential of a predictive optical model method for tissue recognition, based on the statistical analysis of different polarimetric indicators that retrieve complete polarimetric information (selective absorption, retardance and depolarization) of samples. The study is conducted on the experimental Mueller matrices of four biological tissues (bone, tendon, muscle and myotendinous junction) measured from a collection of 157 ex-vivo chicken samples. Moreover, we perform several non-parametric data distribution analyses to build a logistic regression-based algorithm capable to recognize, in a single and dynamic measurement, whether a sample corresponds (or not) to one of the four different tissue categories.
© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.