Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia

Autophagy. 2022 Jun;18(6):1297-1317. doi: 10.1080/15548627.2021.1973339. Epub 2021 Sep 14.

Abstract

Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation.Abbreviations: AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGDreox: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.

Keywords: IGF1R; IGFBP3; LC3; MTORC1; SQSTM1/p62; stroke.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy
  • Brain Ischemia* / drug therapy
  • Glucose / pharmacology
  • Humans
  • Hypoxia
  • Insulin-Like Growth Factor Binding Protein 3 / metabolism
  • Insulin-Like Growth Factor Binding Protein 3 / pharmacology
  • Insulin-Like Growth Factor I / metabolism
  • Mechanistic Target of Rapamycin Complex 1 / metabolism
  • Oxygen / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • Stroke* / drug therapy
  • TOR Serine-Threonine Kinases / metabolism
  • Thrombolytic Therapy
  • Tissue Plasminogen Activator / metabolism
  • Tissue Plasminogen Activator / pharmacology

Substances

  • IGF1 protein, human
  • Insulin-Like Growth Factor Binding Protein 3
  • Insulin-Like Growth Factor I
  • Mechanistic Target of Rapamycin Complex 1
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Tissue Plasminogen Activator
  • Glucose
  • Oxygen