Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays. At least 35 genes are associated with Joubert syndrome, including the gene KIAA0753, which is part of a complex required for primary ciliogenesis. The phenotypic spectrum associated with biallelic pathogenic variants in KIAA0753 is broad and not well-characterized. We describe four individuals with biallelic pathogenic KIAA0753 variants, including five novel variants. We report in vitro results assessing the function of each variant indicating that mutant proteins are not fully competent to promote primary ciliogenesis. Ablation of KIAA0753 in vitro blocks primary ciliogenesis and SHH pathway activity. Correspondingly, KIAA0753 patient fibroblasts have a deficit in primary ciliation and improper SHH and WNT signaling, with a particularly blunted response to SHH pathway stimulation. Our work expands the phenotypic spectrum of KIAA0753 ciliopathies and demonstrates the utility of patient-focused functional assays for proving causality of genetic variants.
Keywords: Joubert syndrome; KIAA0753; ciliopathies.
© 2021 Wiley Periodicals LLC.