Implementing a Machine Learning Strategy to Predict Pathologic Response in Patients With Soft Tissue Sarcomas Treated With Neoadjuvant Chemotherapy

JCO Clin Cancer Inform. 2021 Sep:5:958-972. doi: 10.1200/CCI.21.00062.

Abstract

Purpose: Neoadjuvant chemotherapy (NAC) has been increasingly used in patients with locally advanced high-risk soft tissue sarcomas in the past decade, but definition and prognostic impact of a good histologic response (GHR) are lacking. Our aim was to investigate which histologic feature from the post-NAC surgical specimen independently correlated with metastatic relapse-free survival (MFS) in combination with clinical, radiologic, and pathologic features using a machine learning approach.

Methods: This retrospective study included 175 consecutive patients (median age: 59 years, 75 women) with resectable disease, treated with anthracycline-based NAC between 1989 and 2015 in our sarcoma reference center, and with quantitative histopathologic analysis of the surgical specimen. The outcome of interest was the MFS. A multimodel, multivariate survival analysis was used to define GHR. The added prognostic value of GHR was investigated through the comparisons with the standard model (including histologic grade, size, and depth) and SARCULATOR nomogram using concordance indices (c-index) and Monte-Carlo cross-validation.

Results: Seventy-two patients (72 of 175, 41.1%) had a metastatic relapse. Stepwise Cox regression, random survival forests, and least absolute shrinkage and selection operator-penalized Cox regression all converged toward the same definition for GHR, ie, < 5% stainable tumor cells. The five-year MFS probability was 1 (95% CI, 1 to 1) in patients with GHR versus 0.73 (95% CI, 0.65 to 0.81) in patients without GHR (log-rank P = .0122). The final prognostic model incorporating the GHR was significantly better than the standard model and SARCULATOR (average c-index in testing sets = 0.72 [95% CI, 0.61 to 0.82] v 0.57 [95% CI, 0.44 to 0.70] and 0.54 [95% CI, 0.45 to 0.64], respectively; P = .0414 and .0091).

Conclusion: Histologic response to NAC improves the prediction of MFS in patients with soft tissue sarcoma and represents a possible end point in future studies exploring innovative regimens in the neoadjuvant setting.

MeSH terms

  • Female
  • Humans
  • Machine Learning
  • Middle Aged
  • Neoadjuvant Therapy*
  • Neoplasm Recurrence, Local
  • Retrospective Studies
  • Sarcoma* / drug therapy