Light management is important for improving algae cultivation, specifically by enhancing the productivity of biomass and valued bioproducts. In this study, we present evidence that alternating blue and red-orange light can improve the algal growth kinetics and lipid production in a photobioreactor. Blue (430-445, 460-470 nm) and red-orange light (580-660 nm) from a LED were set at the light saturation point (B: 65 μmol/m2s; RO: 155 μmol/m2s) and alternated for the cultivation of the green alga Chlamydomonas reinhardtii. Growth kinetics, lipid, carbohydrate, and protein content were measured as a function of alternating illumination time. Results reveal that the first illumination light and illumination time had a significant impact on the growth kinetics and nutrient composition. When the red-orange light illumination was used at the beginning of cultivation (RO/B alternation), the biomass concentration and productivity increased 8% and 18% on average, respectively; lipid mass fraction and concentration increased 21-27% and 24-26% when 0.25-0.50 h per day of blue light illumination was used; no significant change of carbohydrate and protein content were observed. Relative to blue light alone, the improvement of growth kinetics, lipid mass fraction and concentration, and the carbohydrate concentration was significant. Under B/RO alternation (when the blue light was used first), on average, the protein content was significantly higher than RO/B alternation.
Keywords: Alternating order; Blue and red-orange light alternation; Growth kinetics; Illumination time; Nutrient composition.
Copyright © 2021 Elsevier B.V. All rights reserved.