The psychological trauma associated with events resulting in traumatic brain injury (TBI) is an important and frequently overlooked factor that may impede brain recovery and worsen mental health following TBI. Indeed, individuals with comorbid posttraumatic stress disorder (PTSD) and TBI have significantly poorer clinical outcomes than individuals with a sole diagnosis. Emotion dysregulation is a common factor leading to poor cognitive and affective outcomes following TBI. Here, we synthesize how acute postinjury molecular processes stemming from either physical or emotional trauma may adversely impact circuitry subserving emotion regulation and ultimately yield long-term system-level functional and structural changes that are common to TBI and PTSD. In the immediate aftermath of traumatic injury, glucocorticoids stimulate excess glutamatergic activity, particularly in prefrontal cortex-subcortical circuitry implicated in emotion regulation. In human neuroimaging work, assessing this same circuitry well after the acute injury, TBI and PTSD show similar impacts on prefrontal and subcortical connectivity and activation. These neural profiles indicate that emotion regulation may be a useful target for treatment and early intervention to prevent the adverse sequelae of TBI. Ultimately, the success of future TBI and PTSD early interventions depends on the fields' ability to address both the physical and emotional impact of physical injury.
Keywords: Glutamate; HPA axis; Neuroimaging; Postconcussion syndrome; Posttraumatic stress disorder; Traumatic brain injury.
Copyright © 2021 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.