Detection and Characterization of Targeted Carbapenem-Resistant Health Care-Associated Threats: Findings from the Antibiotic Resistance Laboratory Network, 2017 to 2019

Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0110521. doi: 10.1128/AAC.01105-21. Epub 2021 Sep 27.

Abstract

Carbapenemase gene-positive (CP) Gram-negative bacilli are of significant clinical and public health concern. Their rapid detection and containment are critical to preventing their spread and additional infections they can cause. To this end, CDC developed the Antibiotic Resistance Laboratory Network (AR Lab Network), in which public health laboratories across all 50 states, several cities, and Puerto Rico characterize clinical isolates of carbapenem-resistant Enterobacterales (CRE), Pseudomonas aeruginosa (CRPA), and Acinetobacter baumannii (CRAB) and conduct colonization screens to detect the presence of mobile carbapenemase genes. In its first 3 years, the AR Lab Network tested 76,887 isolates and 31,001 rectal swab colonization screens. Targeted carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like, blaVIM, or blaIMP) were detected by PCR in 35% of CRE, 2% of CRPA, and <1% of CRAB isolates and 8% of colonization screens tested, respectively. blaKPC and blaVIM were the most common genes in CP-CRE and CP-CRPA isolates, respectively, but regional differences in the frequency of carbapenemase genes detected were apparent. In CRE and CRPA isolates tested for carbapenemase production and the presence of the targeted genes, 97% had concordant results; 3% of CRE and 2% of CRPA isolates were carbapenemase production positive but PCR negative for those genes. Isolates harboring blaNDM showed the highest frequency of resistance across the carbapenems tested, and those harboring blaIMP and blaOXA-48-like genes showed the lowest frequency of carbapenem resistance. The AR Lab Network provides a national snapshot of rare and emerging carbapenemase genes, delivering data to inform public health actions to limit the spread of these antibiotic resistance threats.

Keywords: AR Lab Network; Gram negative; carbapenem resistant; carbapenemase producing.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics
  • Carbapenems* / pharmacology
  • Delivery of Health Care
  • Drug Resistance, Microbial
  • Laboratories*
  • Microbial Sensitivity Tests
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • beta-Lactamases