Our previous studies indicated that Lactobacillus kefiranofaciens HL1, isolated from kefir grain, has strong antioxidant activities and anti-aging effects. However, this strain is difficult to use in isolation when manufacturing fermented products due to poor viability in milk. Thus, the purpose of this study was to apply a co-culture strategy to develop a novel probiotic fermented milk rich in L. kefiranofaciens HL1. Each of four selected starter cultures was co-cultured with kefir strain HL1 in different media to evaluate their effects on microbial activity and availability of milk fermentation. The results of a colony size test on de Man, Rogosa and Sharpe (MRS) agar agar, microbial viability, and acidification performance in MRS broth and skimmed milk suggested that Lactococcus lactis subsp. cremoris APL15 is a suitable candidate for co-culturing with HL1. We then co-cultured HL1 and APL15 in skimmed milk and report remarkable improvement in fermentation ability and no negative impact on the viability of strain HL1 or textural and rheological properties of the milk. Through a co-culture strategy, we have improved the viability of kefir strain HL1 in fermented skimmed milk products and successfully developed a novel milk product with a unique flavor and sufficient probiotics.
Keywords: Lactobacillus kefiranofaciens; co-culture; fermented skimmed milk; probiotics.