Lymphocyte Activation Gene-3 Regulates Dendritic Cell Metabolic Programing and T Cell Priming Function

J Immunol. 2021 Nov 1;207(9):2374-2384. doi: 10.4049/jimmunol.2001188. Epub 2021 Sep 29.

Abstract

Deficiency of lymphocyte activation gene-3 (LAG3) is significantly associated with increased cardiovascular disease risk with in vitro results demonstrating increased TNF-α and decreased IL-10 secretion from LAG3-deficient human B lymphoblasts. The hypothesis tested in this study was that Lag3 deficiency in dendritic cells (DCs) would significantly affect cytokine expression, alter cellular metabolism, and prime naive T cells to greater effector differentiation. Experimental approaches used included differentiation of murine bone marrow-derived DCs (BMDCs) to measure secreted cytokines, cellular metabolism, RNA sequencing, whole cell proteomics, adoptive OT-II CD4+Lag3 +/+ donor cells into wild-type (WT) C57BL/6 and Lag3 -/- recipient mice, and ex vivo measurements of IFN-γ from cultured splenocytes. Results showed that Lag3 -/- BMDCs secreted more TNF-α, were more glycolytic, used fewer fatty acids for mitochondrial respiration, and glycolysis was significantly reduced by exogenous IL-10 treatment. Under basal conditions, RNA sequencing revealed increased expression of CD40 and CD86 and other cytokine-signaling targets as compared with WT. Whole cell proteomics identified a significant number of proteins up- and downregulated in Lag3 -/- BMDCs, with significant differences noted in exogenous IL-10 responsiveness compared with WT cells. Ex vivo, IFN-γ expression was significantly higher in Lag3 -/- mice as compared with WT. With in vivo adoptive T cell and in vitro BMDC:T coculture experiments, Lag3 -/- BMDCs showed greater T cell effector differentiation and proliferation, respectively, compared with WT BMDCs. In conclusion, Lag3 deficiency in DCs is associated with an inflammatory phenotype that provides a plausible mechanism for increased cardiovascular disease risk in humans with LAG3 deficiency.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / metabolism*
  • Cardiovascular Diseases / epidemiology
  • Cardiovascular Diseases / genetics*
  • Cells, Cultured
  • Cellular Reprogramming
  • Dendritic Cells / immunology*
  • Humans
  • Inflammation / immunology*
  • Lymphocyte Activation
  • Lymphocyte Activation Gene 3 Protein
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Risk
  • T-Lymphocytes / immunology*

Substances

  • Antigens, CD
  • Lymphocyte Activation Gene 3 Protein