Background: Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with sporadic outbreaks in Cameroon since 2006. Viral whole genomes were generated to analyze the origins of evolutionary lineages, the potential of emergence/re-emergence, and to infer transmission dynamics of recent Cameroon CHIKV outbreak strains.
Methods: Samples collected between 2016 and 2019 during CHIKV outbreaks in Cameroon were screened for CHIKV using reverse transcription PCR (RT-PCR), followed by whole genome sequencing of positive samples.
Results: Three coding-complete CHIKV genomes were obtained from samples, which belong to an emerging sub-lineage of the East/Central/South African genotype and formed a monophyletic taxon with previous Central African strains. This clade, which we have named the new Central African clade, appears to be evolving at 3.0 × 10-4 nucleotide substitutions per site per year (95% highest posterior density (HPD) interval of 1.94 × 10-4 to 4.1 × 10-4). Notably, mutations in the envelope proteins (E1-A226V, E2-L210Q, and E2-I211T), which are known to enhance CHIKV adaptability and infectious potential in Aedes albopictus, were present in all strains and mapped to established high-density Ae. albopictus populations.
Conclusions: These new CHIKV strains constitute a conserved genomic pool of an emerging sub-lineage, reflecting a putative vector host adaptation to Ae. albopictus, which has practically displaced Aedes aegypti from select regions of Cameroon.
Keywords: Aedes albopictus; Cameroon; Chikungunya virus (CHIKV); E1-A226V; New Central African Clade (nCAC).
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.