Silver nanoparticles (AgNPs) are currently the most frequently used engineered nanoparticles. The penetration of AgNPs into ecosystems is undeniable, and their adverse effects on organism reproduction are of fundamental importance for ecosystem stability. In this study, the survival time of the Egyptian beetle Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae), after a single application of 7 different doses, was calculated for 30 days. Then, for the group for which the effect on mortality was calculated as LOAEL - the Lowest Observed Adverse Effect Level, namely, 0.03 mg AgNPs/g body weight (b.w.t.), the following were assessed: structure and ultrastructure of gonads by TEM and SEM, cell viability by cytometry, DNA damage by the comet assay, and a variety of stress markers by spectrophotometric methods. A dose-dependent reduction in the survival time of the insects was revealed. Detailed analysis of the testes of beetles treated with 0.03 mg AgNPs/g b.w.t. revealed numerous adverse effects of nanoparticles in structure and ultrastructure, accompanied by increased apoptosis (but not necrosis), increased DNA damage, increased lipid peroxidation, and decreased levels of antioxidant enzymes. Most likely, the observed results are connected with the gradual release of Ag+ from the surface of the nanoparticles, which, once applied, are internalized in cells and become a long-lasting, stable source of Ag+ ions. Thus, a single exposure to AgNPs may have the effects of chronic exposure and lead to structural damage and dysfunction of the gonads of B. polychresta.
Keywords: Apoptosis and necrosis; Cell viability; DNA damage; Expected survival time; Sperm; Stress markers.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.