A deep eutectic solvent (DES)-based extraction method is established to facilitate the determination of methomyl in grain via enzyme inhibition fluorescence. The environmentally-friendly DES was synthesized from proline and ethylene glycol and used as a green replacement for traditional extraction solvents that are generally toxic. The DES was added to grain samples and vortex extraction of methomyl, the supernatant was then collected for fluorescence detection. Biomass carbon quantum dots (CQDs) synthesized from millet were used as fluorescent probes. Acetylcholinesterase catalyzes the hydrolysis of acetylthiocholine iodide to thiocholine. The positively-charged thiocholine interacts electrostatically with the negatively-charged quantum dots resulting in the quenching of their fluorescent emission. The pesticide extract solution blocks the enzyme activity and thus recovers the fluorescent from the quantum dots. The fluorescence response was correlated with the amount of methomyl residue in the grain over the range 0.01 to 5 mg kg-1. The limit of detection was found to be 0.003 mg kg-1, and the limit of quantification 0.01 mg kg-1. Recoveries of 86.5% to 107.8% were obtained using real samples, including millet, rice, wheat, and barley, with a relative standard deviation of less than 3.8%. The method is efficient and convenient and has good application prospects for extracting and detecting pesticides in grain samples.
Keywords: Biomass carbon quantum dots; Deep eutectic solvent; Fluorescence; Grain; Methomyl.
Copyright © 2021 Elsevier B.V. All rights reserved.