Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes From Doxorubicin Injury: Insights Into the SENECA Trial

JACC CardioOncol. 2021 Jul 27;3(3):428-440. doi: 10.1016/j.jaccao.2021.05.006. eCollection 2021 Sep.

Abstract

Background: Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was evaluated in the SENECA trial, a Phase 1 National Heart, Lung, and Blood Institute-sponsored study, but the mechanisms underpinning efficacy in human tissue need clarification.

Objectives: The purpose of this study was to perform an in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial-specific MSCs in treating doxorubicin (DOX) injury, using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iCMs) generated from SENECA patients.

Methods: Patient-specific iCMs were injured with 1 μmol/L DOX for 24 hours, treated with extracellular vesicles (EVs) from MSCs by either coculture or direct incubation and then assessed for viability and markers of improved cellular physiology. MSC-derived EVs were separated into large extracellular vesicles (L-EVs) (>200 nm) and small EVs (<220nm) using a novel filtration system.

Results: iCMs cocultured with MSCs in a transwell system demonstrated improved iCM viability and attenuated apoptosis. L-EVs but not small EVs recapitulated this therapeutic effect. L-EVs were found to be enriched in mitochondria, which were shown to be taken up by iCMs. iCMs treated with L-EVs demonstrated improved contractility, reactive oxygen species production, ATP production, and mitochondrial biogenesis. Inhibiting L-EV mitochondrial function with 1-methyl-4-phenylpyridinium attenuated efficacy.

Conclusions: L-EV-mediated mitochondrial transfer mitigates DOX injury in patient-specific iCMs. Although SENECA was not designed to test MSC efficacy, consistent tendencies toward a positive effect were observed across endpoints. Our results suggest a mechanism by which MSCs may improve cardiovascular performance in AIC independent of regeneration, which could inform future trial design evaluating the therapeutic potential of MSCs.

Keywords: AIC, anthracycline induced cardiomyopathy; DOX, doxorubicin; DZR, dexrazoxane; EV, extracellular vesicle; L-EV, large extracellular vesicle; MPP+, 1-methyl-4-phenylpyrindinium; MSC, mesenchymal stem cell; MSC-EV, mesenchymal stem cell derived extracellular vesicle; MTDR, MitoTracker Deep Red; MTG, MitoTracker Green; RBC, red blood cell; ROS, reactive oxygen species; S-EV, small extracellular vesicle; anthracycline; cardiomyopathy; heart failure; iCM, induced cardiomyocyte.