GaN-based micro-LED is an emerging display and communication device, which can work as well as a photodetector, enabling possible applications in machine vision. In this work, we measured the characteristics of micro-LED based photodetector experimentally and proposed a feasible simulation of a novel artificial neural network (ANN) device for the first time based on a micro-LED based photodetector array, providing ultrafast imaging (∼133 million bins per second) and a high image recognition rate. The array itself constitutes a neural network, in which the synaptic weights are tunable by the bias voltage. It has the potentials to be integrated with novel machine vision and reconfigurable computing applications, acting as a role of acceleration and similar functionality expansion. Also, the multi-functionality of micro-LED broadens its application potentials of combining ANN with display and communication.