The present chapter describes basic aspects of the main steps for data processing on mass spectrometry-based metabolomics platforms, focusing on the main objectives and important considerations of each step. Initially, an overview of metabolomics and the pivotal techniques applied in the field are presented. Important features of data acquisition and preprocessing such as data compression, noise filtering, and baseline correction are revised focusing on practical aspects. Peak detection, deconvolution, and alignment as well as missing values are also discussed. Special attention is given to chemical and mathematical normalization approaches and the role of the quality control (QC) samples. Methods for uni- and multivariate statistical analysis and data pretreatment that could impact them are reviewed, emphasizing the most widely used multivariate methods, i.e., principal components analysis (PCA), partial least squares-discriminant analysis (PLS-DA), orthogonal partial least square-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA). Criteria for model validation and softwares used in data processing were also approached. The chapter ends with some concerns about the minimal requirements to report metadata in metabolomics.
Keywords: Chromatography; Data analysis; Data processing; Data treatment; Mass spectrometry; Software tools; Statistical analysis; Untargeted metabolomics.
© 2021. Springer Nature Switzerland AG.