Regression Models and Multivariate Life Tables

J Am Stat Assoc. 2021;116(535):1330-1345. doi: 10.1080/01621459.2020.1713792. Epub 2020 Feb 10.

Abstract

Semiparametric, multiplicative-form regression models are specified for marginal single and double failure hazard rates for the regression analysis of multivariate failure time data. Cox-type estimating functions are specified for single and double failure hazard ratio parameter estimation, and corresponding Aalen-Breslow estimators are specified for baseline hazard rates. Generalization to allow classification of failure times into a smaller set of failure types, with failures of the same type having common baseline hazard functions, is also included. Asymptotic distribution theory arises by generalization of the marginal single failure hazard rate estimation results of Danyu Lin, L.J. Wei and colleagues. The Péano series representation for the bivariate survival function in terms of corresponding marginal single and double failure hazard rates leads to novel estimators for pairwise bivariate survival functions and pairwise dependency functions, at specified covariate history. Related asymptotic distribution theory follows from that for the marginal single and double failure hazard rates and the continuity, compact differentiability of the Péano series transformation and bootstrap applicability. Simulation evaluation of the proposed estimation procedures are presented, and an application to multiple clinical outcomes in the Women's Health Initiative Dietary Modification Trial is provided. Higher dimensional marginal hazard rate regression modeling is briefly mentioned.

Keywords: Bivariate survival function; Composite outcome; Cross ratio; Empirical process; Hazard rates; Marginal modeling; Multivariate failure times.