We demonstrate long-range superconducting correlations in a several-micrometers-long carbon nanotube bundle encapsulated in a van der Waals stack between hBN and NbSe2. We show that a substantial supercurrent flows through the nanotube section beneath the NbSe2 crystal as well as through the 2 μm long section not in contact with it. The large in-plane critical magnetic field of this supercurrent is an indication that even inside the carbon nanotube Cooper pairs enjoy a degree of paramagnetic protection typical of the parent Ising superconductor. As expected for superconductors of nanoscopic cross section, the current-induced breakdown of superconductivity is characterized by resistance steps due to the nucleation of phase slip centers. All elements of our hybrid device are active building blocks of several recently proposed setups for realization of Majorana fermions in carbon nanotubes.
Keywords: 1D superconductivity; carbon nanotubes; niobium diselenide; phase slip centers; phase slip lines; van der Waals superconductors.