T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.
Keywords: Apoptosis; Endoplasmic reticulum stress; PK-15 cells; T-2 Toxin.
Copyright © 2021. Published by Elsevier Inc.