The variable frequency conductivity was applied to characterize the process of solidification of geopolymers based on fly ash with sand additives. XRD qualitative and quantitative analysis, porosity measurements, and sorption analysis of specific surface area were performed. The conductivity was correlated with porosity and specific surface area of geopolymer concretes. Both values of conductivity, real and imaginary parts, decreased during polymerization processing time. Characteristic maximum on graphs describing susceptance vs. frequency curve was observed. The frequency of this maximum depends on time of polymerization and ageing, and can also indicate porosity of material. Low-porous geopolymer concrete shows both low-conductivity values, and susceptance maximum frequency peak occurs more in the higher frequencies than in high-porous materials.
Keywords: XRD; electro conductivity; geopolymer; physical sorption analysis; porosity.