On the Use of Ridge Gap Waveguide Technology for the Design of Transverse Stub Resonant Antenna Arrays

Sensors (Basel). 2021 Oct 2;21(19):6590. doi: 10.3390/s21196590.

Abstract

This paper presents some considerations on the design of a novel antenna consisting of the combination of a transverse stubs (TS) array excited by Ridge Gap Waveguides (RGWs), as well as a discussion of the experimental results obtained from a prototype that was manufactured and measured. A combination of Continuous Transverse Stubs (CTSs) is used as the starting point. Subsequently, the CTSs are modified to include some metallic blockers that split each CTS into a combination (array) of shorter TSs. This is performed in order to excite each individual TS column using a different RGW; thus, ensuring a close to uniform field distribution in the transverse plane of the TS arrays. Hence, the directivity of the antenna is increased. As a series-feed configuration is considered, the antenna keeps a resonant behaviour, having a narrow-band response. A Corporate Feeding Network (CFN) using the aforementioned RGW technology placed in the same layer as the rest of the antenna is included in the design. The radiating area of the antenna is, finally, 5.88λ0×7.12λ0 with a simulated peak gain of 26.2 dBi and a Side Lobe Level (SLL) below -13 dB. A prototype is manufactured and tested. The simulated and measured radiation patterns maintain similar shapes to those of the simulations, with very similar angular widths in both main planes, although the frequency corresponding to the highest directivity changes to 31.8 GHz. A matching bandwidth of 517 MHz and a gain of 24.5 is, finally, achieved at that frequency.

Keywords: continuous transverse stub (CTS); ka-band; resonant antenna; ridge gag waveguide (RGW).

MeSH terms

  • Equipment Design
  • Human Body
  • Technology*
  • Wireless Technology*