Traumatic brain injury (TBI) is considered as the most common cause of disability and death, and therefore an effective intervention of cascade pathology of secondary brain injury promptly can be a potential therapeutic direction for TBI prognosis. Further study of the physiological mechanism of TBI is urgent and important. Phosphoglycerate mutase 5 (Pgam5), a mitochondrial protein, mediate mitochondrial homeostasis, cellular senescence, and necroptosis. This study evaluated the effects of Pgam5 on neurological deficits and neuroinflammation of controlled cortical impact-induced TBI mouse model in vivo and LPS + ATP-induced microglia model in vitro. Pgam5 was overexpressed post-TBI. Pgam5 depletion reduced pyroptosis-related molecules and improved microglia activation, neuron damage, tissue lesion, and neurological dysfunctions in TBI mice. RNA-seq analysis and molecular biology experiments demonstrated that Pgam5 might regulate inflammatory responses by affecting the post-translational modification and protein expression of related genes, including Nlrp3, caspase1, Gsdmd, and Il-1β. In microglia, Pgam5-sh abrogated LPS + ATP-induced Il-1β secretion through Asc oligomerization-mediated caspase-1 activation, which was independent of Rip3. The data demonstrate the critical role Pgam5 plays in nerve injury in the progression of TBI, which regulates Asc polymerization and subsequently caspase1 activation, and thus reveals a fundamental mechanism linking microglial inflammasome activation to Asc/caspase1-generated Il-1β-mediated neuroinflammation. Thus, our data indicate Pgam5 worsens physiological and neurological outcomes post-TBI, which may be a potential therapeutic target to improve neuroinflammation after TBI.
© 2021. The Author(s).