Chinese Color Nest Project : An accelerated longitudinal brain-mind cohort

Dev Cogn Neurosci. 2021 Dec:52:101020. doi: 10.1016/j.dcn.2021.101020. Epub 2021 Oct 11.

Abstract

The ongoing Chinese Color Nest Project (CCNP) was established to create normative charts for brain structure and function across the human lifespan, and link age-related changes in brain imaging measures to psychological assessments of behavior, cognition, and emotion using an accelerated longitudinal design. In the initial stage, CCNP aims to recruit 1520 healthy individuals (6-90 years), which comprises three phases: developing (devCCNP: 6-18 years, N = 480), maturing (matCCNP: 20-60 years, N = 560) and aging (ageCCNP: 60-84 years, N = 480). In this paper, we present an overview of the devCCNP, including study design, participants, data collection and preliminary findings. The devCCNP has acquired data with three repeated measurements from 2013 to 2017 in Southwest University, Chongqing, China (CCNP-SWU, N = 201). It has been accumulating baseline data since July 2018 and the second wave data since September 2020 in Chinese Academy of Sciences, Beijing, China (CCNP-CAS, N = 168). Each participant in devCCNP was followed up for 2.5 years at 1.25-year intervals. The devCCNP obtained longitudinal neuroimaging, biophysical, social, behavioral and cognitive data via MRI, parent- and self-reported questionnaires, behavioral assessments, and computer tasks. Additionally, data were collected on children's learning, daily life and emotional states during the COVID-19 pandemic in 2020. We address data harmonization across the two sites and demonstrated its promise of characterizing the growth curves for the overall brain morphometry using multi-center longitudinal data. CCNP data will be shared via the National Science Data Bank and requests for further information on collaboration and data sharing are encouraged.

Keywords: Accelerated longitudinal design; Adolescence; Brain growth curve; Data sharing; Lifespan development; School-age children.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain
  • COVID-19*
  • Humans
  • Longitudinal Studies
  • Neuroimaging
  • Pandemics*
  • SARS-CoV-2