HPLC-ICPMS was used to analyze the spatiotemporal variation of As species in different sections and tributaries of the Aha Reservoir over four seasons, and the migration and transformation mechanisms were clarified by combined analysis of hydrochemical parameters and microbial composition. The results showed that the internal release of As from the reservoir sediments is mainly due to the reduction of iron oxide and the release of adsorbed As(V). The average proportion of As(III) increased from 27.2% in autumn to 46.5% in summer, 68.9% in winter, and up to 70.8% in spring. In spring and summer, the high concentration of As(III) and organic arsenic in the epilimnion under phosphorus restriction was caused by the reductive metabolism of phytoplankton after intake of As(V). The arsenic species in the metalimnion were mainly affected by the oxidation-reduction potential (ORP). In summer and autumn, As-oxidizing bacteria used As(III) as an electron donor, and nitrate played an important role as an electron acceptor, maintaining the dominance of As(V) in the hypolimnion. However, in winter and spring, temperature-controlled ORP was the main process, which was dominated by As(III). In conclusion, As species show annual cycles in different layers of seasonally thermal stratified reservoirs. It provides a systematic mechanism of As species transformation in reservoirs, especially the effect of biological transformation mechanism.
Keywords: As species; Biotransformation mechanism; Distribution; Oxidizing bacteria; Seasonally stratified reservoir.
Copyright © 2021 Elsevier B.V. All rights reserved.